AIMC Topic: Ki-67 Antigen

Clear Filters Showing 1 to 10 of 63 articles

Comparing non-machine learning vs. machine learning methods for Ki67 scoring in gastrointestinal neuroendocrine tumors.

Scientific reports
The Ki67 score is a crucial prognostic biomarker for neuroendocrine tumors, but its manual assessment is labor-intensive, requiring the counting of 500-2,000 cells in hotspots. Digital image analysis could streamline this process, yet few comprehensi...

Identification of proliferating neural progenitors in the adult human hippocampus.

Science (New York, N.Y.)
Continuous adult hippocampal neurogenesis is involved in memory formation and mood regulation but is challenging to study in humans. Difficulties finding proliferating progenitor cells called into question whether and how new neurons may be generated...

PET image nonuniformity texture features for metastasis risk prediction in osteosarcoma.

Nuclear medicine communications
OBJECTIVE: PET image analysis provides tumor heterogeneity data related to neoadjuvant chemotherapy response (NACR) and metastatic risk in osteosarcoma. Ki-67 expression is used to predict metastasis. The accuracy of prediction models with image quan...

Exploring the potential of machine learning in gastric cancer: prognostic biomarkers, subtyping, and stratification.

BMC cancer
BACKGROUND: Advancements in the management of gastric cancer (GC) and innovative therapeutic approaches highlight the significance of the role of biomarkers in GC prognosis. Machine-learning (ML)-based methods can be applied to identify the most impo...

Digital quantification of Ki67 and PRAME in challenging melanocytic lesions - A novel diagnostic tool.

Pathology, research and practice
The interpretation of immunohistochemical markers in melanocytic lesions possesses difficulties due to expression in non-melanocytic cells and the time-consuming, non-reproducible nature of manual assessment. A digital tool that accurately quantifies...

Toward Accurate Deep Learning-Based Prediction of Ki67, ER, PR, and HER2 Status From H&E-Stained Breast Cancer Images.

Applied immunohistochemistry & molecular morphology : AIMM
Despite improvements in machine learning algorithms applied to digital pathology, only moderate accuracy, to predict molecular information from histology alone, has been achieved so far. One of the obstacles is the lack of large data sets to properly...

Multi-center study: ultrasound-based deep learning features for predicting Ki-67 expression in breast cancer.

Scientific reports
Applying deep learning algorithms to mine ultrasound features of breast cancer and construct a machine learning model that accurately predicts Ki-67 expression level. This multi-center retrospective study analyzed clinical and ultrasound data from 92...

Preoperative Assessment of Ki-67 Labeling Index in Pituitary Adenomas Using Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Ki-67 labeling index (Ki-67 LI) is a proliferation marker that is correlated with aggressive behavior and prognosis of pituitary adenomas (PAs). Dynamic contrast-enhanced MRI (DCE-MRI) may potentially contribute to the preoperative assess...

CT-based machine learning radiomics predicts Ki-67 expression level and its relationship with overall survival in resectable pancreatic ductal adenocarcinoma.

Abdominal radiology (New York)
BACKGROUND: The prognostic prediction of pancreatic ductal adenocarcinoma (PDAC) remains challenging. This study aimed to develop a radiomics model to predict Ki-67 expression status in PDAC patients using radiomics features from dual-phase enhanced ...