The Ki67 score is a crucial prognostic biomarker for neuroendocrine tumors, but its manual assessment is labor-intensive, requiring the counting of 500-2,000 cells in hotspots. Digital image analysis could streamline this process, yet few comprehensi...
Continuous adult hippocampal neurogenesis is involved in memory formation and mood regulation but is challenging to study in humans. Difficulties finding proliferating progenitor cells called into question whether and how new neurons may be generated...
OBJECTIVE: PET image analysis provides tumor heterogeneity data related to neoadjuvant chemotherapy response (NACR) and metastatic risk in osteosarcoma. Ki-67 expression is used to predict metastasis. The accuracy of prediction models with image quan...
BACKGROUND: Advancements in the management of gastric cancer (GC) and innovative therapeutic approaches highlight the significance of the role of biomarkers in GC prognosis. Machine-learning (ML)-based methods can be applied to identify the most impo...
The interpretation of immunohistochemical markers in melanocytic lesions possesses difficulties due to expression in non-melanocytic cells and the time-consuming, non-reproducible nature of manual assessment. A digital tool that accurately quantifies...
Applied immunohistochemistry & molecular morphology : AIMM
Mar 27, 2025
Despite improvements in machine learning algorithms applied to digital pathology, only moderate accuracy, to predict molecular information from histology alone, has been achieved so far. One of the obstacles is the lack of large data sets to properly...
Applying deep learning algorithms to mine ultrasound features of breast cancer and construct a machine learning model that accurately predicts Ki-67 expression level. This multi-center retrospective study analyzed clinical and ultrasound data from 92...
Journal of magnetic resonance imaging : JMRI
Mar 17, 2025
BACKGROUND: Ki-67 labeling index (Ki-67 LI) is a proliferation marker that is correlated with aggressive behavior and prognosis of pituitary adenomas (PAs). Dynamic contrast-enhanced MRI (DCE-MRI) may potentially contribute to the preoperative assess...
OBJECTIVE: To evaluate whether deep learning (DL) analysis of intratumor subregion based on dynamic contrast-enhanced MRI (DCE-MRI) can help predict Ki-67 expression level in breast cancer.
BACKGROUND: The prognostic prediction of pancreatic ductal adenocarcinoma (PDAC) remains challenging. This study aimed to develop a radiomics model to predict Ki-67 expression status in PDAC patients using radiomics features from dual-phase enhanced ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.