AIMC Topic:
Middle Aged

Clear Filters Showing 1181 to 1190 of 14057 articles

Integrating radiomics into predictive models for low nuclear grade DCIS using machine learning.

Scientific reports
Predicting low nuclear grade DCIS before surgery can improve treatment choices and patient care, thereby reducing unnecessary treatment. Due to the high heterogeneity of DCIS and the limitations of biopsies in fully characterizing tumors, current dia...

MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival.

Scientific reports
We aimed to predict CD44 expression and assess its prognostic significance in patients with high-grade gliomas (HGG) using non-invasive radiomics models based on machine learning. Enhanced magnetic resonance imaging, along with the corresponding gene...

Modifying the severity and appearance of psoriasis using deep learning to simulate anticipated improvements during treatment.

Scientific reports
A neural network was trained to generate synthetic images of severe and moderate psoriatic plaques, after being trained on 375 photographs of patients with psoriasis taken in a clinical setting. A latent w-space vector was identified that allowed the...

Machine learning identifies clinical tumor mutation landscape pathways of resistance to checkpoint inhibitor therapy in NSCLC.

Journal for immunotherapy of cancer
BACKGROUND: Immune checkpoint inhibitors (CPIs) have revolutionized cancer therapy for several tumor indications. However, a substantial fraction of patients treated with CPIs derive no benefit or have short-lived responses to CPI therapy. Identifyin...

Performance of a point-of-care ultrasound platform for artificial intelligence-enabled assessment of pulmonary B-lines.

Cardiovascular ultrasound
BACKGROUND: The incorporation of artificial intelligence (AI) into point-of-care ultrasound (POCUS) platforms has rapidly increased. The number of B-lines present on lung ultrasound (LUS) serve as a useful tool for the assessment of pulmonary congest...

Interpretable machine learning model for early morbidity risk prediction in patients with sepsis-induced coagulopathy: a multi-center study.

Frontiers in immunology
BACKGROUND: Sepsis-induced coagulopathy (SIC) is a complex condition characterized by systemic inflammation and coagulopathy. This study aimed to develop and validate a machine learning (ML) model to predict SIC risk in patients with sepsis.

Efficacy and Safety of a Medical Robot for Non-Face-to-Face Nasopharyngeal Swab Specimen Collection: Nonclinical and Clinical Trial Findings for COVID-19 Testing.

American journal of rhinology & allergy
ObjectivesTo meet the high demand for polymerase chain reaction (PCR) tests to diagnose COVID-19 and rapidly control the outbreak, an efficient and safe molecular diagnostic protocol is necessary. In this study, we evaluated the efficacy and safety o...

Interpretation of cardiopulmonary exercise test by GPT - promising tool as a first step to identify normal results.

Expert review of respiratory medicine
BACKGROUND: Cardiopulmonary exercise testing (CPET) is used in the evaluation of unexplained dyspnea. However, its interpretation requires expertise that is often not available. We aim to evaluate the utility of ChatGPT (GPT) in interpreting CPET res...

The Extent to Which Artificial Intelligence Can Help Fulfill Metastatic Breast Cancer Patient Healthcare Needs: A Mixed-Methods Study.

Current oncology (Toronto, Ont.)
The Artificial Intelligence Patient Librarian (AIPL) was designed to meet the psychosocial and supportive care needs of Metastatic Breast Cancer (MBC) patients with HR+/HER2- subtypes. AIPL provides conversational patient education, answers user ques...