AIMC Topic: Predictive Value of Tests

Clear Filters Showing 1441 to 1450 of 2212 articles

To Generate an Ensemble Model for Women Thyroid Prediction Using Data Mining Techniques.

Asian Pacific journal of cancer prevention : APJCP
Objective: The main objective of this paper is to easily identify thyroid symptom for treatment. Methods: In this paper two main techniques are proposed for mining the hidden pattern in the dataset. Ensemble-I and Ensemble- II both are machine learni...

Advanced atherosclerosis imaging by CT: Radiomics, machine learning and deep learning.

Journal of cardiovascular computed tomography
In the last decade, technical advances in the field of medical imaging significantly improved and broadened the application of coronary CT angiography (CCTA) for the non-invasive assessment of coronary artery disease. Recently, similar breakthroughs ...

Machine learning algorithms for the detection of spurious white blood cell differentials due to erythrocyte lysis resistance.

Journal of clinical pathology
AIMS: Red blood cell (RBC) lysis resistance interferes with white blood cell (WBC) count and differential; still, its detection relies on the identification of an abnormal scattergram, and this is not clearly adverted by specific flags in the Beckman...

Machine learning approaches to studying the role of cognitive reserve in conversion from mild cognitive impairment to dementia.

International journal of geriatric psychiatry
OBJECTIVES: The overall aim of the present study was to explore the role of cognitive reserve (CR) in the conversion from mild cognitive impairment (MCI) to dementia. We used traditional and machine learning (ML) techniques to compare converter and n...

Machine Learning Readmission Risk Modeling: A Pediatric Case Study.

BioMed research international
BACKGROUND: Hospital readmission prediction in pediatric hospitals has received little attention. Studies have focused on the readmission frequency analysis stratified by disease and demographic/geographic characteristics but there are no predictive ...

Dense networks with relative location awareness for thorax disease identification.

Medical physics
PURPOSE: Chest X-ray is one of the most common examinations for diagnosing heart and lung diseases. Due to the existing of a large number of clinical cases, many automated diagnosis algorithms based on chest X-ray images have been proposed. To our kn...

Predicting daily outcomes in acetaminophen-induced acute liver failure patients with machine learning techniques.

Computer methods and programs in biomedicine
BACKGROUND/OBJECTIVE: Assessing prognosis for acetaminophen-induced acute liver failure (APAP-ALF) patients during the first week of hospitalization often presents significant challenges. Current models such as the King's College Criteria (KCC) and t...

Identifying Factors That Affect Patient Survival After Orthotopic Liver Transplant Using Machine-Learning Techniques.

Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation
OBJECTIVES: Survival after liver transplant depends on pretransplant, peritransplant, and posttransplant factors. Identifying effective factors for patient survival after transplant can help transplant centers make better decisions.

Evidential MACE prediction of acute coronary syndrome using electronic health records.

BMC medical informatics and decision making
BACKGROUND: Major adverse cardiac event (MACE) prediction plays a key role in providing efficient and effective treatment strategies for patients with acute coronary syndrome (ACS) during their hospitalizations. Existing prediction models have limita...