AIMC Topic: Radiation Injuries

Clear Filters Showing 11 to 20 of 57 articles

Development of learning-based predictive models for radiation-induced atrial fibrillation in non-small cell lung cancer patients by integrating patient-specific clinical, dosimetry, and diagnostic information.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Radiotherapy (RT) in non-small cell lung cancer (NSCLC) can induce cardiac adverse events, including atrial fibrillation (AF), despite advanced RT. This study integrates patient-specific information to develop learning-based m...

Three-Dimensional Deep Learning Normal Tissue Complication Probability Model to Predict Late Xerostomia in Patients With Head and Neck Cancer.

International journal of radiation oncology, biology, physics
PURPOSE: Conventional normal tissue complication probability (NTCP) models for patients with head and neck cancer are typically based on single-value variables, which, for radiation-induced xerostomia, are baseline xerostomia and mean salivary gland ...

Combined deep learning and radiomics in pretreatment radiation esophagitis prediction for patients with esophageal cancer underwent volumetric modulated arc therapy.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
PURPOSE: To develop a combined radiomics and deep learning (DL) model in predicting radiation esophagitis (RE) of a grade ≥ 2 for patients with esophageal cancer (EC) underwent volumetric modulated arc therapy (VMAT) based on computed tomography (CT)...

Personalized Composite Dosimetric Score-Based Machine Learning Model of Severe Radiation-Induced Lymphopenia Among Patients With Esophageal Cancer.

International journal of radiation oncology, biology, physics
PURPOSE: Radiation-induced lymphopenia (RIL) is common among patients undergoing radiation therapy (RT)' Severe RIL has been linked to adverse outcomes. The severity and risk of RIL can be predicted from baseline clinical characteristics and dosimetr...

A dosiomics model for prediction of radiation-induced acute skin toxicity in breast cancer patients: machine learning-based study for a closed bore linac.

European journal of medical research
BACKGROUND: Radiation induced acute skin toxicity (AST) is considered as a common side effect of breast radiation therapy. The goal of this study was to design dosiomics-based machine learning (ML) models for prediction of AST, to enable creating opt...

Leveraging radiomics and machine learning to differentiate radiation necrosis from recurrence in patients with brain metastases.

Journal of neuro-oncology
OBJECTIVE: Radiation necrosis (RN) can be difficult to radiographically discern from tumor progression after stereotactic radiosurgery (SRS). The objective of this study was to investigate the utility of radiomics and machine learning (ML) to differe...

A deep learning-based method for the prediction of temporal lobe injury in patients with nasopharyngeal carcinoma.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: To establish a deep learning-based model to predict radiotherapy-induced temporal lobe injury (TLI).

Deciphering the fibrotic process: mechanism of chronic radiation skin injury fibrosis.

Frontiers in immunology
This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, high...

Raman microspectroscopy and machine learning for use in identifying radiation-induced lung toxicity.

PloS one
OBJECTIVE: In this work, we explore and develop a method that uses Raman spectroscopy to measure and differentiate radiation induced toxicity in murine lungs with the goal of setting the foundation for a predictive disease model.