AIMC Topic: Carcinoma, Squamous Cell

Clear Filters Showing 131 to 140 of 216 articles

Analysis of gene expression profiles of lung cancer subtypes with machine learning algorithms.

Biochimica et biophysica acta. Molecular basis of disease
Lung cancer is one of the most common cancer types worldwide and causes more than one million deaths annually. Lung adenocarcinoma (AC) and lung squamous cell cancer (SCC) are two major lung cancer subtypes and have different characteristics in sever...

Machine learning identifies 10 feature miRNAs for lung squamous cell carcinoma.

Gene
Lung squamous cell carcinoma (LUSC) is a common type of malignancy. The mechanism behind its tumor progression is not clear yet. The aim of this study is to use machine learning to identify the feature miRNAs, which can be reliably used as biomarkers...

Artificial neural networks allow response prediction in squamous cell carcinoma of the scalp treated with radiotherapy.

Journal of the European Academy of Dermatology and Venereology : JEADV
BACKGROUND: Epithelial neoplasms of the scalp account for approximately 2% of all skin cancers and for about 10-20% of the tumours affecting the head and neck area. Radiotherapy is suggested for localized cutaneous squamous cell carcinomas (cSCC) wit...

Machine learning helps identifying volume-confounding effects in radiomics.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
Highlighting the risk of biases in radiomics-based models will help improve their quality and increase usage as decision support systems in the clinic. In this study we use machine learning-based methods to identify the presence of volume-confounding...

Automated oral squamous cell carcinoma identification using shape, texture and color features of whole image strips.

Tissue & cell
Despite profound knowledge of the incidence of oral cancers and a large body of research beyond it, it continues to beat diagnosis and treatment management. Post physical observation by clinicians, a biopsy is a gold standard for accurate detection o...

Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.

European radiology
OBJECTIVE: To develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical tumors in magnetic resonance (MR) images and the robustness of extracting apparent diffusion coefficient (ADC) radiomics feature...

Effect of Radiation Doses to the Heart on Survival for Stereotactic Ablative Radiotherapy for Early-stage Non-Small-cell Lung Cancer: An Artificial Neural Network Approach.

Clinical lung cancer
INTRODUCTION: The cardiac radiation dose is an important predictor of cardiac toxicity and overall survival (OS) for patients with locally advanced non-small-cell lung cancer (NSCLC). However, radiation-induced cardiac toxicity among patients with ea...

Machine learning methods applied to audit of surgical outcomes after treatment for cancer of the head and neck.

The British journal of oral & maxillofacial surgery
Most surgical specialties have attempted to address concerns about unfair comparison of outcomes by "risk-adjusting" data to benchmark specialty-specific outcomes that are indicative of the quality of care. We are building on previous work in head an...