AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Child, Preschool

Showing 41 to 50 of 1150 articles

Clear Filters

O blood usage trends in the pediatric population 2015-2019: A multi-institutional analysis.

Transfusion
BACKGROUND: In 2019, AABB released the bulletin "Recommendations on the Use of Group O Red Blood Cells" in which the recommendations about pediatric and neonatal blood transfusions were limited. Eight U.S. pediatric hospitals sought to determine tren...

Using machine learning to identify features associated with different types of self-injurious behaviors in autistic youth.

Psychological medicine
BACKGROUND: Self-injurious behaviors (SIB) are common in autistic people. SIB is mainly studied as a broad category, rather than by specific SIB types. We aimed to determine associations of distinct SIB types with common psychiatric, emotional, medic...

Machine learning in lymphocyte and immune biomarker analysis for childhood thyroid diseases in China.

BMC pediatrics
OBJECTIVE: This study aims to characterize and analyze the expression of representative biomarkers like lymphocytes and immune subsets in children with thyroid disorders. It also intends to develop and evaluate a machine learning model to predict if ...

Machine learning-based risk prediction model for pertussis in children: a multicenter retrospective study.

BMC infectious diseases
BACKGROUND: Pertussis is a highly contagious respiratory disease. Even though vaccination has reduced the incidence, cases have resurfaced in certain regions due to immune escape and waning vaccine efficacy. Identifying high-risk patients to mitigate...

Transformer-based deep learning ensemble framework predicts autism spectrum disorder using health administrative and birth registry data.

Scientific reports
Early diagnosis and access to resources, support and therapy are critical for improving long-term outcomes for children with autism spectrum disorder (ASD). ASD is typically detected using a case-finding approach based on symptoms and family history,...

Prediction of moderate to severe bleeding risk in pediatric immune thrombocytopenia using machine learning.

European journal of pediatrics
UNLABELLED: This study aimed to develop and validate a risk prediction model for moderate to severe bleeding in children with immune thrombocytopenia (ITP). Data from 286 ITP patients were prospectively collected and randomly split into training (80%...

Data independent acquisition proteomics and machine learning reveals that proteins associated with immunity are potential molecular markers for early diagnosis of autism.

Clinica chimica acta; international journal of clinical chemistry
BACKGROUND: Early diagnosis of autism is critical to its treatment, but so far, there is no clear molecular marker for early diagnosis in children.

Interpretable machine learning model for early prediction of disseminated intravascular coagulation in critically ill children.

Scientific reports
Disseminated intravascular coagulation (DIC) is a thrombo-hemorrhagic disorder that can be life-threatening in critically ill children, and the quest for an accurate and efficient method for early DIC prediction is of paramount importance. Candidate ...

Automatic detection of developmental stages of molar teeth with deep learning.

BMC oral health
BACKGROUND: The aim was to fully automate molar teeth developmental staging and to comprehensively analyze a wide range of deep learning models' performances for molar tooth germ detection on panoramic radiographs.

Electrocardiogram-based deep learning to predict left ventricular systolic dysfunction in paediatric and adult congenital heart disease in the USA: a multicentre modelling study.

The Lancet. Digital health
BACKGROUND: Left ventricular systolic dysfunction (LVSD) is independently associated with cardiovascular events in patients with congenital heart disease. Although artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis is predictive of ...