AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Kidney

Showing 31 to 40 of 431 articles

Clear Filters

An arterial spin labeling-based radiomics signature and machine learning for the prediction and detection of various stages of kidney damage due to diabetes.

Frontiers in endocrinology
OBJECTIVE: The aim of this study was to assess the predictive capabilities of a radiomics signature obtained from arterial spin labeling (ASL) imaging in forecasting and detecting stages of kidney damage in patients with diabetes mellitus (DM), as we...

Machine Learning-Enabled Fuhrman Grade in Clear-cell Renal Carcinoma Prediction Using Two-dimensional Ultrasound Images.

Ultrasound in medicine & biology
OBJECTIVE: Accurate assessment of Fuhrman grade is crucial for optimal clinical management and personalized treatment strategies in patients with clear cell renal cell carcinoma (CCRCC). In this study, we developed a predictive model using ultrasound...

Predicting postoperative prognosis in clear cell renal cell carcinoma using a multiphase CT-based deep learning model.

Abdominal radiology (New York)
BACKGROUND: Some clinicopathological risk stratification systems (CRSSs) such as the leibovich score have been used to predict the postoperative prognosis of patients with clear cell renal cell carcinoma (ccRCC), but there are no reliable noninvasive...

Exploring the Potential of Claude 3 Opus in Renal Pathological Diagnosis: Performance Evaluation.

JMIR medical informatics
BACKGROUND: Artificial intelligence (AI) has shown great promise in assisting medical diagnosis, but its application in renal pathology remains limited.

A machine learning model for predicting worsening renal function using one-year time series data in patients with type 2 diabetes.

Journal of diabetes investigation
BACKGROUND AND AIMS: To prevent end-stage renal disease caused by diabetic kidney disease, we created a predictive model for high-risk patients using machine learning.

Deep learning for 3D vascular segmentation in hierarchical phase contrast tomography: a case study on kidney.

Scientific reports
Automated blood vessel segmentation is critical for biomedical image analysis, as vessel morphology changes are associated with numerous pathologies. Still, precise segmentation is difficult due to the complexity of vascular structures, anatomical va...

A machine learning-based analysis for the definition of an optimal renal biopsy for kidney cancer.

Urologic oncology
OBJECTIVE: Renal Tumor biopsy (RTB) can assist clinicians in determining the most suitable approach for treatment of renal cancer. However, RTB's limitations in accurately determining histology and grading have hindered its broader adoption and data ...

Comparison of deep learning schemes in grading non-alcoholic fatty liver disease using B-mode ultrasound hepatorenal window images with liver biopsy as the gold standard.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
BACKGROUND/INTRODUCTION: To evaluate the performance of pre-trained deep learning schemes (DLS) in hepatic steatosis (HS) grading of Non-Alcoholic Fatty Liver Disease (NAFLD) patients, using as input B-mode US images containing right kidney (RK) cort...

Multimodal ultrasound deep learning to detect fibrosis in early chronic kidney disease.

Renal failure
We developed a multimodal ultrasound (US) deep learning (DL) fusion model to automatically classify early fibrosis in patients with chronic kidney disease (CKD). This prospective study included patients with CKD who underwent continuous gray-scale US...

A novel approach to the cause of death identification-multi-strategy integration of multi-organ FTIR spectroscopy information using machine learning.

Talanta
Identifying the cause of death has always been a major focus and challenge in forensic practice and research. Traditional techniques for determining the causes of death are time-consuming, labor-intensive, have high professional barriers, and are vul...