AIMC Topic: Monocytes

Clear Filters Showing 21 to 30 of 42 articles

The Predictive Value of Monocytes in Immune Microenvironment and Prognosis of Glioma Patients Based on Machine Learning.

Frontiers in immunology
Gliomas are primary malignant brain tumors. Monocytes have been proved to actively participate in tumor growth. Weighted gene co-expression network analysis was used to identify meaningful monocyte-related genes for clustering. Neural network and SVM...

Single Cell RNA-Seq and Machine Learning Reveal Novel Subpopulations in Low-Grade Inflammatory Monocytes With Unique Regulatory Circuits.

Frontiers in immunology
Subclinical doses of LPS (SD-LPS) are known to cause low-grade inflammatory activation of monocytes, which could lead to inflammatory diseases including atherosclerosis and metabolic syndrome. Sodium 4-phenylbutyrate is a potential therapeutic compou...

Characterization of Antiphospholipid Syndrome Atherothrombotic Risk by Unsupervised Integrated Transcriptomic Analyses.

Arteriosclerosis, thrombosis, and vascular biology
OBJECTIVE: Our aim was to characterize distinctive clinical antiphospholipid syndrome phenotypes and identify novel microRNA (miRNA)-mRNA-intracellular signaling regulatory networks in monocytes linked to cardiovascular disease. Approach and Results:...

A rapid white blood cell classification system based on multimode imaging technology.

Journal of biophotonics
In order to simplify the complexity of white blood cell classification in existing point-of-care testing (POCT) testing equipment, a white blood cell classification detection system based on microfluidic and multimode imaging was constructed. Microfl...

Prediction Power on Cardiovascular Disease of Neuroimmune Guidance Cues Expression by Peripheral Blood Monocytes Determined by Machine-Learning Methods.

International journal of molecular sciences
Atherosclerosis is the underlying pathology in a major part of cardiovascular disease, the leading cause of mortality in developed countries. The infiltration of monocytes into the vessel walls of large arteries is a key denominator of atherogenesis,...

Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis.

Nature communications
Single-cell RNA sequencing (scRNA-seq) can characterize cell types and states through unsupervised clustering, but the ever increasing number of cells and batch effect impose computational challenges. We present DESC, an unsupervised deep embedding a...

Cenicriviroc, a dual CCR2 and CCR5 antagonist leads to a reduction in plasma fibrotic biomarkers in persons living with HIV on antiretroviral therapy.

HIV research & clinical practice
Chronic HIV is associated with increased inflammation and tissue fibrosis despite suppressive antiretroviral therapy (ART). Monocytes and macrophages have been implicated in the pathogenesis of fibrosis, facilitated by chemokine receptor interaction...

Machine learning for the detection of early immunological markers as predictors of multi-organ dysfunction.

Scientific data
The immune response to major trauma has been analysed mainly within post-hospital admission settings where the inflammatory response is already underway and the early drivers of clinical outcome cannot be readily determined. Thus, there is a need to ...

Machine Learning to Detect Alzheimer's Disease from Circulating Non-coding RNAs.

Genomics, proteomics & bioinformatics
Blood-borne small non-coding (sncRNAs) are among the prominent candidates for blood-based diagnostic tests. Often, high-throughput approaches are applied to discover biomarker signatures. These have to be validated in larger cohorts and evaluated by ...