AIMC Topic: Radiomics

Clear Filters Showing 81 to 90 of 674 articles

Habitat Radiomics and Deep Learning Features Based on CT for Predicting Lymphovascular Invasion in T1-stage Lung Adenocarcinoma: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: The research aims to examine how CT-derived habitat radiomics can be used to predict lymphovascular invasion (LVI) in patients with T1-stage lung adenocarcinoma (LUAD), and compare its effectiveness to traditional radiomics ...

Prediction of early recurrence in primary central nervous system lymphoma based on multimodal MRI-based radiomics: A preliminary study.

European journal of radiology
OBJECTIVES: To evaluate the role of multimodal magnetic resonance imaging radiomics features in predicting early recurrence of primary central nervous system lymphoma (PCNSL) and to investigate their correlation with patient prognosis.

Combined peritumoral radiomics and clinical features predict 12-month progression free survival in glioblastoma.

Journal of neuro-oncology
PURPOSE: Analyzing post-treatment MRIs from glioblastoma patients can be challenging due to similar radiological presentations of disease progression and treatment effects. Identifying radiomics features (RFs) revealing progressive glioblastoma can c...

Automated opportunistic screening for osteoporosis using deep learning-based automatic segmentation and radiomics on proximal femur images from low-dose abdominal CT.

BMC musculoskeletal disorders
RATIONALE AND OBJECTIVES: To establish an automated osteoporosis detection model based on low-dose abdominal CT (LDCT). This model combined a deep learning-based automatic segmentation of the proximal femur with a radiomics-based bone status classifi...

Prediction of Tumor Budding Grading in Rectal Cancer Using a Multiparametric MRI Radiomics Combined with a 3D Vision Transformer Deep Learning Approach.

Academic radiology
RATIONALE AND OBJECTIVES: The objective is to assess the effectiveness of a multiparametric MRI radiomics strategy combined with a 3D Vision Transformer (ViT) deep learning (DL) model in predicting tumor budding (TB) grading in individuals diagnosed ...

A radiomics approach to distinguish Progressive Supranuclear Palsy Richardson's syndrome from other phenotypes starting from MR images.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Progressive Supranuclear Palsy (PSP) is an uncommon neurodegenerative disorder with different clinical onset, including Richardson's syndrome (PSP-RS) and other variant phenotypes (vPSP). Recognising the clinical progression...

MRI radiomics combined with delta-radiomics model for predicting pathological complete response in locally advanced rectal cancer patients after neoadjuvant chemoradiotherapy: A multi-institutional study.

Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine
PURPOSE: To construct and validate a magnetic resonance imaging (MRI) radiomics combined with delta-radiomics and clinical information (C) model for predicting pathological complete response (pCR) in patients with locally advanced rectal cancer (LARC...

A strategy for multimodal integration of transcriptomics, proteomics, and radiomics data for the prediction of recurrence in patients with IDH-mutant gliomas.

International journal of cancer
Isocitrate dehydrogenase-mutant gliomas are lethal brain cancers that impair quality of life in young adults. Although less aggressive than glioblastomas, IDH-mutant gliomas invariably progress to incurable disease with unpredictable recurrence. A be...

Radiomics for lung cancer diagnosis, management, and future prospects.

Clinical radiology
Lung cancer remains the leading cause of cancer-related mortality worldwide, with its early detection and effective treatment posing significant clinical challenges. Radiomics, the extraction of quantitative features from medical imaging, has emerged...