AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiomics

Showing 81 to 90 of 518 articles

Clear Filters

Association between deep learning radiomics based on placental MRI and preeclampsia with fetal growth restriction: A multicenter study.

European journal of radiology
PURPOSE: Preeclampsia (PE) is associated with placental insufficiency and could lead to adverse pregnancy outcomes. The study aimed to develop a placental T2-weighted image-based automatic quantitative model for the identification of PE pregnancies a...

Deep learning radiomics nomogram for preoperatively identifying moderate-to-severe chronic cholangitis in children with pancreaticobiliary maljunction: a multicenter study.

BMC medical imaging
BACKGROUND: Long-term severe cholangitis can lead to dense adhesions and increased fragility of the bile duct, complicating surgical procedures and elevating operative risk in children with pancreaticobiliary maljunction (PBM). Consequently, preopera...

Machine Learning-Based CT Radiomics Model to Predict the Risk of Hip Fragility Fracture.

Academic radiology
RATIONALE AND OBJECTIVES: This research aimed to develop a combined model based on proximal femur attenuation values and radiomics features at routine CT to predict hip fragility fracture using machine learning methods.

Radiomics in glioma: emerging trends and challenges.

Annals of clinical and translational neurology
Radiomics is a promising neuroimaging technique for extracting and analyzing quantitative glioma features. This review discusses the application, emerging trends, and challenges associated with using radiomics in glioma. Integrating deep learning alg...

Deep learning and radiomics for gastric cancer serosal invasion: automated segmentation and multi-machine learning from two centers.

Journal of cancer research and clinical oncology
OBJECTIVE: The objective of this study is to develop an automated method for segmenting spleen computed tomography (CT) images using a deep learning model. This approach is intended to address the limitations of manual segmentation, which is known to...

Multiscale deep learning radiomics for predicting recurrence-free survival in pancreatic cancer: A multicenter study.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
PURPOSE: This multicenter study aimed to develop and validate a multiscale deep learning radiomics nomogram for predicting recurrence-free survival (RFS) in patients with pancreatic ductal adenocarcinoma (PDAC).

A comparative study of statistical, radiomics, and deep learning feature extraction techniques for medical image classification in optical and radiological modalities.

Computers in biology and medicine
Feature extraction in ML plays a crucial role in transforming raw data into a more meaningful and interpretable representation. In this study, we thoroughly examined a range of feature extraction techniques and assessed their impact on the binary cla...

Large language models in methodological quality evaluation of radiomics research based on METRICS: ChatGPT vs NotebookLM vs radiologist.

European journal of radiology
OBJECTIVES: This study aimed to evaluate the effectiveness of large language models (LLM) in assessing the methodological quality of radiomics research, using METhodological RadiomICs Score (METRICS) tool.

The impact of the novel CovBat harmonization method on enhancing radiomics feature stability and machine learning model performance: A multi-center, multi-device study.

European journal of radiology
PURPOSE: This study aims to assess whether the novel CovBat harmonization method can further reduce radiomics feature variability from different imaging devices in multi-center studies and improve machine learning model performance compared to the Co...