Cancer imaging : the official publication of the International Cancer Imaging Society
Mar 12, 2025
BACKGROUND: Programmed death ligand 1 (PD-L1) expression status, closely related to immunotherapy outcomes, is a reliable biomarker for screening patients who may benefit from immunotherapy. Here, we developed and validated an interpretable machine l...
BACKGROUND: Early and accurate identification of epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients with brain metastases is critical for guiding targeted therapy. This study aimed to develop a deep...
Cognitive impairment in cerebral small vessel disease (CSVD) progresses subtly but carries significant clinical consequences, necessitating effective diagnostic tools. This study developed and validated predictive models for CSVD-related cognitive im...
RATIONALE AND OBJECTIVES: To investigate a computed tomography (CT)-based multiparameter deep learning-radiomic model (DLRM) for predicting the preoperative tumor budding (TB) grade in patients with rectal cancer.
Cancer imaging : the official publication of the International Cancer Imaging Society
Mar 6, 2025
BACKGROUND: Apart from rare cases such as lymphomas, germ cell tumors, neuroendocrine neoplasms, and thymic hyperplasia, thymic mass lesions (TMLs) are typically categorized into cysts, and thymomas. However, the classification results cannot be dete...
Lung cancer remains one of the most prevalent cancers globally and the leading cause of cancer-related deaths, accounting for nearly one-fifth of all cancer fatalities. Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography ([F]FDG...
Predicting low nuclear grade DCIS before surgery can improve treatment choices and patient care, thereby reducing unnecessary treatment. Due to the high heterogeneity of DCIS and the limitations of biopsies in fully characterizing tumors, current dia...
We aimed to predict CD44 expression and assess its prognostic significance in patients with high-grade gliomas (HGG) using non-invasive radiomics models based on machine learning. Enhanced magnetic resonance imaging, along with the corresponding gene...
BACKGROUND: To develop and validate a model that integrates clinical data, deep learning radiomics, and radiomic features to predict high-risk patients for cage subsidence (CS) after lumbar fusion.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.