AI Medical Compendium Journal:
International immunopharmacology

Showing 1 to 10 of 33 articles

Exosomes derived from human umbilical cord mesenchymal stem cells attenuate senescence of peritoneal mesothelial cells by inhibiting oxidative stress.

International immunopharmacology
OBJECTIVE: Aging is a natural process that affects cellular function. In peritoneal dialysis (PD), chronic exposure to dialysate induces oxidative stress (OS) in peritoneal mesothelial cells (PMCs), leading to cellular aging, fibrosis, and reduced di...

Development and validation of a CT-based radiomics machine learning model for differentiating immune-related interstitial pneumonia.

International immunopharmacology
INTRODUCTION: Immune checkpoint inhibitor-related interstitial pneumonia (CIP) poses a diagnostic challenge due to its radiographic similarity to other pneumonias. We developed a non-invasive model using CT imaging to differentiate CIP from other pne...

Machine learning-based characterization of PANoptosis-related biomarkers and immune infiltration in ulcerative colitis: A comprehensive bioinformatics analysis and experimental validation.

International immunopharmacology
Ulcerative colitis (UC) is a heterogeneous autoimmune condition. PANoptosis, a new form of programmed cell death, plays a role in inflammatory diseases. This study aimed to identify differentially expressed PANoptosis-related genes (PRGs) involved in...

Analysis and validation of programmed cell death genes associated with spinal cord injury progression based on bioinformatics and machine learning.

International immunopharmacology
BACKGROUND: Spinal cord injury (SCI) is a severe condition affecting the central nervous system. It is marked by a high disability rate and potential for death. Research has demonstrated that programmed cell death (PCD) plays a significant role in th...

Identifying candidate RNA-seq biomarkers for severity discrimination in chemical injuries: A machine learning and molecular dynamics approach.

International immunopharmacology
INTRODUCTION: Biomarkers play a crucial role across various fields by providing insights into biological responses to interventions. High-throughput gene expression profiling technologies facilitate the discovery of data-driven biomarkers through ext...

Identification of an immune-related gene panel for the diagnosis of pulmonary arterial hypertension using bioinformatics and machine learning.

International immunopharmacology
OBJECTIVE: This study aimed to screen an immune-related gene (IRG) panel and develop a novel approach for diagnosing pulmonary arterial hypertension (PAH) utilizing bioinformatics and machine learning (ML).

Analysis of the relationships between interferon-stimulated genes and anti-SSA/Ro 60 antibodies in primary Sjögren's syndrome patients via multiomics and machine learning methods.

International immunopharmacology
BACKGROUND: Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease characterized by lymphocyte infiltration of the exocrine glands. Interferon-stimulated genes (ISGs) are often upregulated in patients with pSS, and anti-SSA/Ro 60 a...

Machine learning identifies immune-based biomarkers that predict efficacy of anti-angiogenesis-based therapies in advanced lung cancer.

International immunopharmacology
BACKGROUND: The anti-angiogenic drugs showed remarkable efficacy in the treatment of lung cancer. Nonetheless, the potential roles of the intra-tumoral immune cell abundances and peripheral blood immunological features in prognosis prediction of pati...

A multi-task deep learning model based on comprehensive feature integration and self-attention mechanism for predicting response to anti-PD1/PD-L1.

International immunopharmacology
BACKGROUND: Immune checkpoint inhibitor (ICI) has been widely used in the treatment of advanced cancers, but predicting their efficacy remains challenging. Traditional biomarkers are numerous but exhibit heterogeneity within populations. For comprehe...