AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Disease Progression

Showing 411 to 420 of 704 articles

Clear Filters

Prediction of progression from pre-diabetes to diabetes: Development and validation of a machine learning model.

Diabetes/metabolism research and reviews
AIMS: Identification, a priori, of those at high risk of progression from pre-diabetes to diabetes may enable targeted delivery of interventional programmes while avoiding the burden of prevention and treatment in those at low risk. We studied whethe...

Machine Learning Characterization of COPD Subtypes: Insights From the COPDGene Study.

Chest
COPD is a heterogeneous syndrome. Many COPD subtypes have been proposed, but there is not yet consensus on how many COPD subtypes there are and how they should be defined. The COPD Genetic Epidemiology Study (COPDGene), which has generated 10-year lo...

Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data.

Scientific reports
Knee osteoarthritis (OA) is the most common musculoskeletal disease without a cure, and current treatment options are limited to symptomatic relief. Prediction of OA progression is a very challenging and timely issue, and it could, if resolved, accel...

A temporal visualization of chronic obstructive pulmonary disease progression using deep learning and unstructured clinical notes.

BMC medical informatics and decision making
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a progressive lung disease that is classified into stages based on disease severity. We aimed to characterize the time to progression prior to death in patients with COPD and to generate a t...

Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts.

Scientific reports
Chronic infection with Hepatitis B virus (HBV) is a major risk factor for the development of advanced liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The relative contribution of virological factors to disease progres...

Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
We present the application of limited one-time sampling irregularity map (LOTS-IM): a fully automatic unsupervised approach to extract brain tissue irregularities in magnetic resonance images (MRI), for quantitatively assessing white matter hyperinte...

Prediction of lithium response using clinical data.

Acta psychiatrica Scandinavica
OBJECTIVE: Promptly establishing maintenance therapy could reduce morbidity and mortality in patients with bipolar disorder. Using a machine learning approach, we sought to evaluate whether lithium responsiveness (LR) is predictable using clinical ma...