AIMC Topic: Predictive Value of Tests

Clear Filters Showing 1271 to 1280 of 2211 articles

Artificial intelligence in abdominal aortic aneurysm.

Journal of vascular surgery
OBJECTIVE: Abdominal aortic aneurysm (AAA) is a life-threatening disease, and the only curative treatment relies on open or endovascular repair. The decision to treat relies on the evaluation of the risk of AAA growth and rupture, which can be diffic...

Radiogenomic Models Using Machine Learning Techniques to Predict EGFR Mutations in Non-Small Cell Lung Cancer.

Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes
BACKGROUND: The purpose of this study was to build radiogenomics models from texture signatures derived from computed tomography (CT) and F-FDG PET-CT (FDG PET-CT) images of non-small cell lung cancer (NSCLC) with and without epidermal growth factor ...

Deep Learning-Based Quantification of Epicardial Adipose Tissue Volume and Attenuation Predicts Major Adverse Cardiovascular Events in Asymptomatic Subjects.

Circulation. Cardiovascular imaging
BACKGROUND: Epicardial adipose tissue (EAT) volume (cm) and attenuation (Hounsfield units) may predict major adverse cardiovascular events (MACE). We aimed to evaluate the prognostic value of fully automated deep learning-based EAT volume and attenua...

Novel artificial neural network and linear regression based equation for estimating visceral adipose tissue volume.

Clinical nutrition (Edinburgh, Scotland)
BACKGROUND: There is a growing interest in fast and reliable assessment of abdominal visceral adipose tissue (VAT) volume for risk stratification of metabolic disorders. However, imaging based measurement of VAT is costly and limited by scanner avail...

The Prediction of Human Abdominal Adiposity Based on the Combination of a Particle Swarm Algorithm and Support Vector Machine.

International journal of environmental research and public health
: Abdominal adiposity is an important risk factor of chronic cardiovascular diseases, thus the prediction of abdominal adiposity and obesity can reduce the risks of contracting such diseases. However, the current prediction models display low accurac...

Machine learning-based prediction of glioma margin from 5-ALA induced PpIX fluorescence spectroscopy.

Scientific reports
Gliomas are infiltrative brain tumors with a margin difficult to identify. 5-ALA induced PpIX fluorescence measurements are a clinical standard, but expert-based classification models still lack sensitivity and specificity. Here a fully automatic clu...

A machine-learning approach to predicting hypotensive events in ICU settings.

Computers in biology and medicine
BACKGROUND: Predicting hypotension well in advance provides physicians with enough time to respond with proper therapeutic measures. However, the real-time prediction of hypotension with high positive predictive value (PPV) is a challenge. This is du...