AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Progression-Free Survival

Showing 21 to 30 of 40 articles

Clear Filters

Intensity harmonization techniques influence radiomics features and radiomics-based predictions in sarcoma patients.

Scientific reports
Intensity harmonization techniques (IHT) are mandatory to homogenize multicentric MRIs before any quantitative analysis because signal intensities (SI) do not have standardized units. Radiomics combine quantification of tumors' radiological phenotype...

Cancer gene expression profiles associated with clinical outcomes to chemotherapy treatments.

BMC medical genomics
BACKGROUND: Machine learning (ML) methods still have limited applicability in personalized oncology due to low numbers of available clinically annotated molecular profiles. This doesn't allow sufficient training of ML classifiers that could be used f...

Non-invasive decision support for NSCLC treatment using PET/CT radiomics.

Nature communications
Two major treatment strategies employed in non-small cell lung cancer, NSCLC, are tyrosine kinase inhibitors, TKIs, and immune checkpoint inhibitors, ICIs. The choice of strategy is based on heterogeneous biomarkers that can dynamically change during...

Using Machine Learning Algorithms to Predict Immunotherapy Response in Patients with Advanced Melanoma.

Clinical cancer research : an official journal of the American Association for Cancer Research
PURPOSE: Several biomarkers of response to immune checkpoint inhibitors (ICI) show potential but are not yet scalable to the clinic. We developed a pipeline that integrates deep learning on histology specimens with clinical data to predict ICI respon...

Personalised Medicine for Colorectal Cancer Using Mechanism-Based Machine Learning Models.

International journal of molecular sciences
Gaining insight into the mechanisms of signal transduction networks (STNs) by using critical features from patient-specific mathematical models can improve patient stratification and help to identify potential drug targets. To achieve this, these mod...

A machine learning approach applied to gynecological ultrasound to predict progression-free survival in ovarian cancer patients.

Archives of gynecology and obstetrics
In a growing number of social and clinical scenarios, machine learning (ML) is emerging as a promising tool for implementing complex multi-parametric decision-making algorithms. Regarding ovarian cancer (OC), despite the standardization of features t...

Deep learning prediction of pathological complete response, residual cancer burden, and progression-free survival in breast cancer patients.

PloS one
The goal of this study was to employ novel deep-learning convolutional-neural-network (CNN) to predict pathological complete response (PCR), residual cancer burden (RCB), and progression-free survival (PFS) in breast cancer patients treated with neoa...