AIMC Topic: Follow-Up Studies

Clear Filters Showing 1 to 10 of 750 articles

Progression and natural history of Atypical Parkinsonism (ATPARK): Protocol for a longitudinal follow-up study from an underrepresented population.

PloS one
BACKGROUND: Atypical Parkinsonian Syndromes (APS) form the third largest group of neurodegenerative disorders including Progressive Supranuclear Palsy (PSP), Multiple System Atrophy (MSA), and Corticobasal Syndrome (CBS). These conditions are charact...

Machine learning model for predicting recurrence following intensity-modulated radiation therapy in nasopharyngeal carcinoma.

World journal of surgical oncology
BACKGROUND: Nasopharyngeal carcinoma (NPC) exhibits unique histopathological characteristics compared to other head and neck cancers. The prognosis of NPC patients after intensity-modulated radiation therapy (IMRT) has not been fully studied, and the...

Artificial Intelligence-Based Digital Histologic Classifier for Prostate Cancer Risk Stratification: Independent Blinded Validation in Patients Treated With Radical Prostatectomy.

JCO clinical cancer informatics
PURPOSE: Artificial intelligence (AI) tools that identify pathologic features from digitized whole-slide images (WSIs) of prostate cancer (CaP) generate data to predict outcomes. The objective of this study was to evaluate the clinical validity of an...

Peritoneal cytology predicting distant metastasis in uterine carcinosarcoma: machine learning model development and validation.

World journal of surgical oncology
OBJECTIVE: This study develops and validates a machine learning model using peritoneal cytology to predict distant metastasis in uterine carcinosarcoma, aiding clinical decision-making.

Preoperative lymph node metastasis risk assessment in invasive micropapillary carcinoma of the breast: development of a machine learning-based predictive model with a web-based calculator.

World journal of surgical oncology
BACKGROUND: Invasive micropapillary carcinoma (IMPC) is a rare subtype of breast cancer characterized by a high risk of lymph node metastasis (LNM). The study aimed to identify predictors of LNM and to develop a machine learning (ML)-based risk predi...

SMOTE-Enhanced Explainable Artificial Intelligence Model for Predicting Visual Field Progression in Myopic Normal Tension Glaucoma.

Journal of glaucoma
PRCIS: The AI model, enhanced by SMOTE to balance data classes, accurately predicted visual field deterioration in patients with myopic normal tension glaucoma. Using SHAP analysis, the key variables driving disease progression were identified.

A Deep Learning Survival Model for Evaluating the Survival Prognosis of Papillary Thyroid Cancer: A Population-Based Cohort Study.

Annals of surgical oncology
BACKGROUND: Deep learning can assess the individual survival prognosis in sizeable datasets with intricate underlying processes. However, studies exploring the performance of deep learning survival in papillary thyroid cancer (PTC) are lacking. This ...

Updated perspectives on visceral pleural invasion in non-small cell lung cancer: A propensity score-matched analysis of the SEER database.

Current problems in cancer
BACKGROUND: Visceral pleural invasion (VPI), including PL1 (the tumor invades beyond the elastic layer) and PL2 (the tumor extends to the surface of the visceral pleura), plays a crucial role in staging Non-Small Cell Lung Cancer (NSCLC). However, th...

Integrating Machine Learning and Follow-Up Variables to Improve Early Detection of Hepatocellular Carcinoma in Tyrosinemia Type 1: A Multicenter Study.

International journal of molecular sciences
Hepatocellular carcinoma (HCC) is a major complication of tyrosinemia type 1 (HT-1), an inborn error of metabolism affecting tyrosine catabolism. The risk of HCC is higher in late diagnoses despite treatment. Alpha-fetoprotein (AFP) is widely used to...